Protein production and secretion in an Aspergillus nidulans mutant impaired in glycosylation.
نویسندگان
چکیده
O-glycosylation has been considered a limiting factor in protein secretion in filamentous fungi. Overexpression of the yeast DPM1 gene encoding dolichylphosphate mannose synthase (DPMS) in an Aspergillus nidulans mutant (BWB26A) deficient in O-glycosylation caused an increase in the number of secretory vesicles and changes in protein secretion. However, the secretory proteins, primarily O-mannosylated glucoamylase and N-glycosylated invertase, were mainly trapped in the periplasmic space. Different glycoforms of invertase were found insite the cells, in the periplasmic space and in the cultivation medium. Our data point to the importance of the cell wall as a barrier in protein secretion.
منابع مشابه
Mapping N-linked glycosylation of carbohydrate-active enzymes in the secretome of Aspergillus nidulans grown on lignocellulose
BACKGROUND The genus Aspergillus includes microorganisms that naturally degrade lignocellulosic biomass, secreting large amounts of carbohydrate-active enzymes (CAZymes) that characterize their saprophyte lifestyle. Aspergillus has the capacity to perform post-translational modifications (PTM), which provides an additional advantage for the use of these organisms as a host for the production of...
متن کاملAspergillus nidulans protein kinase A plays an important role in cellulase production
BACKGROUND The production of bioethanol from lignocellulosic feedstocks is dependent on lignocellulosic biomass degradation by hydrolytic enzymes. The main component of lignocellulose is cellulose and different types of organisms are able to secrete cellulases. The filamentous fungus Aspergillus nidulans serves as a model organism to study cellulase production and the available tools allow expl...
متن کاملCharacterization of the Aspergillus parasiticus delta12-desaturase gene: a role for lipid metabolism in the Aspergillus-seed interaction.
In the mycotoxigenic oilseed pathogens Aspergillus flavus and Aspergillus parasiticus and the model filamentous fungus Aspergillus nidulans, unsaturated fatty acids and their derivatives act as important developmental signals that affect asexual conidiospore, sexual ascospore and/or sclerotial development. To dissect the relationship between lipid metabolism and fungal development, an A. parasi...
متن کاملCharacterization of the Aspergillus parasiticus D-desaturase gene: a role for lipid metabolism in the Aspergillus–seed interaction
Received 1 April 2004 Revised 16 June 2004 Accepted 24 June 2004 In the mycotoxigenic oilseed pathogens Aspergillus flavus and Aspergillus parasiticus and the model filamentous fungus Aspergillus nidulans, unsaturated fatty acids and their derivatives act as important developmental signals that affect asexual conidiospore, sexual ascospore and/or sclerotial development. To dissect the relations...
متن کاملA p53-like transcription factor similar to Ndt80 controls the response to nutrient stress in the filamentous fungus, Aspergillus nidulans
The Aspergillus nidulans xprG gene encodes a putative transcriptional activator that is a member of the Ndt80 family in the p53-like superfamily of proteins. Previous studies have shown that XprG controls the production of extracellular proteases in response to starvation. We undertook transcriptional profiling to investigate whether XprG has a wider role as a global regulator of the carbon nut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica Polonica
دوره 52 1 شماره
صفحات -
تاریخ انتشار 2005